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Abstract

We consider the nonequilibrium dynamics of a a real scalar �eld in a degenerate

double-well potential. The system is prepared in the lowest free energy state in one of

the wells and the dynamics is driven by the coupling of the �eld to a thermal bath.

Using a simple analytical model, based on the subcritical bubbles method, we compute

the fraction of the total volume which uctuates to the opposite phase as a function

of the parameters of the potential. Furthermore, we show how complete phase mixing,

i.e. symmetry restoration, is related to percolation, which is dynamically driven by

domain instability. Our method describes quantitatively recent results obtained by

numerical simulations, and is applicable to systems in the Ising universality class.

submitted to Physical Review Letters.
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It is well-known that an Ising ferromagnet loses its net magnetization above a certain

temperature. The simplest mean-�eld description of this phenomenon is based on the

Ginzburg-Landau model, in which the average magnetization M = (V �1)
R
dV M(x) is

the order parameter, and the thermodynamic potential is expanded to fourth power in M ,

V (M) = a(T � Tc)M
2 + bM4 [1]. We are only interested in the case of vanishing external

magnetic �eld. Above Tc, the lowest free energy state has zero net magnetization, while

below Tc the material acquires a magnetizationM = �[ajT � Tcj=2b]
1=2.

It is also well known that mean-�eld theory breaks down close to Tc; for example, al-

though mean-�eld theory correctly predicts that the correlation length diverges as � �

j(T � Tc)=Tcj
�� , it gives the value of the critical exponent � = 0:5, while numerical sim-

ulations �nd � = 0:630(2) [2]. In order to handle the infrared divergences that appear near

Tc, the renormalization group is used to relate a given theory to an equivalent theory with

smaller correlation lengths and thus better behaved in the infrared. With the "-expansion,

one works in 4�" dimensions and �nds a �xed point of order " of the renormalization group

equations, taking the limit "! 1 in the end. To second order in ", � = 1
2
+ 1

12
"+ 7

162
"2 ' 0:63,

a remarkable result [3].

In the present work, we would like to follow a somewhat orthogonal approach to study a
closely related question. Consider again an Ising ferromagnet in the absence of an external
magnetic �eld, which is well below its critical temperature and has been prepared with all
spins initially pointing in one direction. In the thermodynamic limit, this is the broken-

symmetric state. As the temperature is increased, thermal uctuations will ip groups
of spins, so that the absolute value of the magnetization will start decreasing. At some
temperature T �c < Tc, jM j ! 0. (This is another way of expressing the breakdown of mean-
�eld theory.) The question we would like to address is the following: At a given temperature

below Tc, what is the fraction of the volume occupied by each of the two possible phases of
the system as a function of the parameters of the potential? Can we provide a method for
computing this fraction which somehow encompasses the breakdown of mean-�eld theory,
without resorting to the renormalization group?

We start by writing the homogeneous part of the free-energy density as

V (�; T ) =
a

2

�
T 2
� T 2

2

�
�2 �

�

3
T�3 +

�

4
�4 : (1)

It is easy to see that, with a simple �eld rede�nition, we can rewrite V (�; T ) as a Ginzburg-
Landau potential with a temperature-dependent magnetic �eld. At the critical temperature,

this �eld vanishes and we recover the degenerate double-well potential.

Introducing dimensionless variables ~x = a1=2T2x, ~t = a1=2T2t, X = a�1=4T�12 �, and
� = T=T2, the Hamiltonian is,

H[X]

�
=

1

�

Z
d3~x

�
1

2

��� ~5X
���2 + 1

2

�
�2 � 1

�
X2

�
~�

3
�X3 +

~�

4
X4

#
; (2)

where ~� = a�3=4�, and ~� = a�1=2� (henceforth we drop the tildes). At the critical tempera-

ture �c = (1�2�2=9�)�1=2 the two minima, atX0 = 0 andX+ = ��
2�

h
1 +

q
1� 4� (1� 1=�2) =�2

i
,

are degenerate. In what follows, we are only interested in the system at �c.
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In a recent work, Borrill and Gleiser (BG) simulated the dynamics of the above system

coupled to a Markovian thermal bath [4]. (This is why we wrote the potential as in Eq. 1.)

In analogy with Ising ferromagnetism, it is useful to think of the system described by the

Hamiltonian above as having two phases, the \0 phase", for X < Xmax, and the \+ phase",

for X � Xmax, where Xmax is at the maximum of the double-well potential. The initial

conditions were chosen so that the system started in the 0 phase. Thus, V t
0 =VT (t = 0) = 1,

where V t
0 is the total volume in the 0 phase, VT is the constant total volume, and V t

0 =VT (t)+

V t
+=VT (t) = 1. The coupling of this system to a thermal bath will induce the nucleation

of domains of + phase. For a small free-energy barrier between the two phases, domains

of the 0 phase will also nucleate within domains of + phase, and so on, resulting in a

very complicated domain structure. It is necessary to distinguish between two possible

kind of domains, connected and disconnected. Connected domains percolate throughout the

volume, and thus cannot be surrounded by a domain of the opposite phase. Disconnected

domains have �nite volume and are always surrounded by the other phase. In general,

V t
0(+) = V c

0(+) + V d
0(+).

Keeping the system at �c and �xing � = 0:065 (this seemingly ad hoc choice was inspired

by the electroweak e�ective potential, although any other value would do), BG measured the
equilibrium fractions, f0 � V t

0 =VT and f+ � V t
+=VT , as a function of the coupling �. They

found that for � � �c ' 0:025, f0 = f+ = 0:5, that is, the two phases completely mix (see
Fig. 1). In other words, for � � �c, the symmetry is restored, even though the mean-�eld

potential still has a double-well shape. Clearly, for � � �c, mean-�eld theory breaks down,
and the system is better described by an e�ective free-energy density with a single minimum
at Xmax = 0. This situation is exactly analogous to an Ising ferromagnet for T � T �c .

In what follows, we will reproduce these results with a simple statistical model for the

thermal uctuations. Our approach is completely general, in that it can be easily adapted to
other systems described by a similar double-well potential, i.e., for systems in the universality
class of the Ising ferromagnet. We will assume that the large-amplitude uctuations from the
0(+) phase into the +(0) phase can be modelled by spherically-symmetric subcritical bubbles

of Gaussian shape of a given radius and amplitude (For previous treatments of subcritical
bubbles see Ref. [5].),

�c(r) = �ce
�r2=R2

; �0(r) = �c
�
1� e�r

2=R2
�
; (3)

where R is the radial size of the con�guration, and �c is the value of the �eld amplitude at

the bubble's core, away from (and into) the 0 phase. For these con�gurations to interpolate

between the two phases in the system, �c � �max. With this ansatz, the free energy of the

uctuations assumes the general form, Fsc(R; �c; T ) = b�2cR+c�(�c; T )R
3, where b, and c are

numerical constants and �(�c; T ) is a polynomial which depends on the particular potential
used. We will further assume that the nucleation rate for these con�gurations is obtained

from a Gibbs distribution, G(�;R) = Aexp [�Fsc=T ], where A is a constant. The nucleation

rate per unit volume is then � =
R
Gd� dR.

The number density of bubbles of, say, the + phase with radii between R and R + �R

and amplitudes between � and �+ �� at time t+ �t is

n+(R + �R; �+ ��; t + �t) � n+(R; �+ ��; t + �t)

� [n+(R+ �R; �; t+ �t) � n+(R; �; t+ �t)] :
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Changes in the number density are generated by three di�erent processes: i) bubbles can

shrink into and out of this interval. [We assume the time dependence of the amplitude is

closely related to the radial time-dependence, as recent numerical studies have demonstrated

[6].]; ii) bubbles can be thermally nucleated into this interval; iii) bubbles can be thermally

destroyed out of this interval by inverse nucleation. Expanding to �rst order in �R; ��, and

�t, we obtain a Boltzmann equation for the bubble distribution function fd+(R; �; t),

@fd+(R; �; t)

@t
= �jvj

@fd+
@R

+
V c
0

VT
G0!+

�
V d
+

VT
G+!0 ; (4)

where the bubble density distribution function for domains of the + phase, [hence the su-
perscript d, for disconnected], is de�ned as

fd+(R; �; t) �
@2n+

@�@R
; (5)

and G0(+)!+(0) is the Gibbs distribution for the nucleation rate per unit volume of bubbles
of the +(0) phase within the 0(+) phase. Note that we have written the Boltzmann equation
to be consistent with the initial conditions used in the simulations, so that only disconnected
domains contribute to the fraction of the volume in the + phase. It is straightforward to

adapt the equation to di�erent initial conditions.
In order to proceed, we note that the total fraction of volume in the + phase can be

written as

 '
Z
1

�max

Z
1

Rmin

 
4�R3

3

!
@2n+

@�@R
d�dR : (6)

For a degenerate double-well, G+!0 = G0!+ � G, and the Boltzmann equation can be
written as,

@fd+(R; �; t)

@t
= �jvj

@fd+
@R

+ (1� 2)G : (7)

Imposing the physical condition fd+(R ! 1; �; t) ! 0, we can solve for the equilibrium

distribution function ( _fd+ = 0), and use it to compute the equilibrium fraction of the volume

in the + phase, eq, which is the quantity measured in the BG simulation. The general

solution is,

eq =
I(�max; Rmin)

1 + 2I(�max; Rmin)
; (8)

where,

I(�max; Rmin) =
A

jvj

Z
1

R

Z
1

Rmin

Z
1

�max

dR0dRd�

�
4�

3
R3exp [�Fsc(R

0; �)] ; (9)
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and �max is at the maximum of the double well potential, and the minimum radius is taken

to be the lattice spacing in the BG simulation, i.e. Rmin = 1, which sets the coarse-graining

scale. An analytical expression for I(�max; Rmin) can be obtained if we write Fsc(R
0; �) �

b�2R0. This is a good approximation in the case that uctuations are small enough that the

volume term is sub-dominant.

In Fig. 1, we show eq as a function of �. The dots are the results of BG, while the

curves are the results of the integration of the Boltzmann equation, for di�erent values of

the single parameter A=jvj. It is clear that for � <
� �c, we obtain an excellent �t to the data

with A=jvj = 60.

For larger values of �, our method underestimates the fraction of volume in the + phase.

This can be understood by noting that our kinetic description does not include possible terms

which account for the coalescence of nearby domains. As uctuations become more probable,

these terms will play an increasingly important rôle. In fact, it is easy to understand how the

onset of domain instability is intimately related to percolation of the + phase. (An excellent

introduction to percolation theory can be found in Ref. [7].)
Consider a large spherical domain of the + phase of radius R. There are three ways by

which the volume V of this domain can change; i) it may shrink by surface tension with a
velocity v; ii) a small bubble of the + phase may nucleate just outside it; iii) a small bubble
of the 0 phase may nucleate inside it. Assuming that the bubble of the 0 phase nucleates just
inside the large domain (see Fig. 2), we can write an approximate equation for the change

in the volume V ,

dV

dt
= �v4�R2 + (�0!+�V )

4�

3
r3 � (�+!0�V

0)
4�

3
r03 ; (10)

where �0(+)!+(0)�V
(0) is the nucleation rate for a bubble of the +(0)-phase of radius r(

0) in
the neighborhood of the domain wall. Assuming for simplicity that r = r0, and recognizing
that �+!0(r) = �0!+(r) for a degenerate double-well potential, the condition for domain
instability, dV

dt
> 0, becomes,

�r4 >
3

8�

�
R

r

�
v : (11)

On the other hand, in order for the + phase to percolate, eq > pc, where pc is the critical
percolation probability. Using Boltzmann's equation, we can approximately write

eq =
g

1 + 2g
; g '

4�

3v
�r4 : (12)

Thus, for percolation, we obtain the inequality,

�r4 >
3

4�

pc

1� 2pc
v : (13)

For a simple cubic lattice, pc = 0:311. Note that this is remarkably close to the value of eq
for �c, the point where the kinetic description breaks down (see Fig. 1).

Moreover, comparing the two inequalities of Eqs. 11 and 13, it is clear that they are

satis�ed at similar values of �r4. In particular, writing for simplicity pc = 1=3, they are

equal for R = 2r. This simple argument strongly suggests that the onset of percolation is

dynamically driven by the nucleation of small bubbles in the neighborhood of large domains.
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As stated before, once the barrier between the phases is small enough, the domain wall

becomes unstable and nucleation of small bubbles is the dominant process for changing a

volume of space from one phase to another. The equations determining the fraction of

volume in each phase can then be approximated as

dV+

dt
=

�
4�

3
r3�0!+

�
V0(t) �

�
4�

3
r3�+!0

�
V+(t)

V0(t) = Vtot � V+(t) ; (14)

where r is the average radius of a nucleated bubble. The solution to these equations is

V+(t)

Vtot
=

1

2
+

 
V+(0)

Vtot
�

1

2

!
e�(8��r

3=3)t: (15)

Notice that the equilibrium value V+(1)=Vtot = eq = 1=2, independently of V+(0).

Therefore, once the domain wall becomes unstable, the system will equilibrate to  = 1=2
in a time scale � (�r3)�1, which, at percolation, is of order the light crossing time r (see
Eq. 13). That is, once the system percolates, the stable, equilibrium, mean value of the �eld

is at �max, which is the value exactly between the two minima.
As shown eq. (15), even if the system is perturbed away from  = 1=2, it will quickly

relax back to this value. This indicates that the percolation point is the point of symmetry
restoration: the symmetry of the true (coarse-grained) e�ective potential has been restored,

even though the mean �eld potential still describes a double-well potential. It is important
to note, however, that even if the average value of the �eld is �max, there are widespread
large amplitude uctuations with average volume set by the correlation length; the system
is far from being locally homogeneous.

We conclude that our method based on subcritical bubbles gives a quantitatively accurate
description of the behavior of thermal uctuations for models in the Ising universality class.
It also provides a dynamical picture of symmetry restoration, and the breakdown of mean-
�eld theory. Furthermore, the method relates the breakdown of mean-�eld theory to a critical

value of a given parameter, which is easily calculable. For values of the parameter larger than
the critical value, large domains become unstable to growth due to the nucleation of nearby
bubbles, percolation ensues, and symmetry or, more accurately, complete phase mixing, is

restored.
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Figure 1. The fraction of the volume in the + phase. The dots are from the numerical
simulations of BG, while the lines are the solutions of the Boltzmann equation for di�erent
values of the parameter A=jvj.

Figure 2. Schematic of domain instability. The surface tension on bubble wall will tend

to shrink the large bubble with wall velocity v. However, more bubbles of + phase will
nucleate just outside the large bubble wall than bubbles of 0 phase just inside the wall
because �V > �V 0 (nucleation rates of 0 and + bubbles are equal). This will tend to make

the large bubble grow. When the barrier between the phases is small enough, nucleation
dominates over bubble shrinking, causing the wall to become unstable to rapid growth.
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